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A system of homogeneous solutions is constructed for the axisymmetric mixed problem 
of elasticity theory for an infinite cylinder, one part of whose surface is stress-free, while 

the other is under sliding boundary conditions. Asymptotic formulas governing the stress 
concentration and the shape of the free surface at the line of boundary condition sepa- 

ration are obtained. The system can be utilized to satisfy conditions on the endfaces of 

a semi-infinite or finite cylinder. 

Three contact problems of a semi-infinite cylinder partially compressed without fric- 

tion by an absolutely rigid collar. The conditions on the side surface are hence satisfied 

exactly. The coefficients in the series of homogeneous solutions are determined from 

the normal systems of algebraic equations. 

1. Let us consider a system of homogeneous solutions each of which satisfies mixed 
conditions on the surface of cylinder of unit radius 

‘t rZ=u=o for r = 1, 2 > 0 (1.1) 

7 rL = or = 0 for r = 1, 2 < 0 (1.2) 

and has finite elastic stress energy at the line of separation of these conditions at r = ‘l 

0, - 0 (z+l ) for Z-+0, U~O(Z'~) for Z-+ - 0 (1.3) 

(al, an>01 

Let us start with the construction of a subsystem of solutions which increase without 
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limit as z -+ 00. In the Papkovich-Neuber formulas fl] 

(1.4) 

let us set 

.wk ‘-1 = F, - 4 (11 a) & (FF, + zF, + F3) 

F1 = 0, F, = AkeakZJO (a, F), F3 = BkeakZJO (CZ~F) 

(k=i, 2,. . .) 

where A k and Bk are arbitrary real constants, uk are positive zeros of the Bessel func- 
tion Jr (Y). 

The solution obtained, which we denote by the superscript /cl, satisfy condition (1.1) 

ukt (z, F) = mlakeakZ (Akz + Bk) J1 (W’) 

Tlr: (Z, F) = 2Gmlukeakz [A, (Ukz - m,) + Bkak] JI (“kr) (1.5) 

q,kl (z, F) = 2G mlUkeak~ {Al, [ 25J, (a$) + [QJ, (a$) - 

-F--~J, (akF)] Z] + Bk [T&-l (ak - oak - 0) J, (a$) - r-‘JI (ak’-)l} 

Here 

m, = [4(1 -~)]-l, mq = I- 25, m3 = [2(1 + a)]‘, ml= 2(1 -a) 

In order to satisfy condition (1.2). we find, and add to (1.5). the solution of the follow- 
ing problem : 

7: -0 i-2 - for F=i, -co<z<co (1.6) 

u=O for r=1, z>O; or= -6, kt(z, 1) for F= 1, z<O (1.7) 

In (1.4) let us set 

F, = 0, kc, = aF$d~, FS=4(1-cs)(F,-F~) (1 .w 

(AF, = AFs = 0, A=+++&+$) 

and let us apply the two-sided Laplace transform. Integrating by parts and considering 

the displacements bounded as z --f oo , decrease as eaZ (a > 0) for z -+ - 00 , and 
the parameter Y to be within the strip O( Re Y< a, we obtain 

24 (Y, r) = $ :1 (Z, F) e-YLdz = ck (Y) [Cl’ (V) + p’ (Y)] (1.9) 

zL’(Y, F) = $w (z, r) e-vzdz = Ck (v) Y [e (Y) - p (Y)] (1.10) 

E (v) = Y [Jo (v)J,, (Y F) -I- FJ, (v)J1 (v F)], p(v) = m,J,(v) Jo (YF) 

The prime here denotes the derivative with respect to F, and condition (1.6) has been 
utilized in calculating the functions e (Y) and p (Y) . 

Let us evaluate the function Ck (Y). To do this, let us introduce the notation 



B. M. Nuller 

u”(v) = f u (2, 1) e-?iz, 
--oo 

6- (v) = _fm 0, (2, 1) e-%2 

Q+(V) = S q. (2, 1) e-%.2 
0 

and Let us form the following system of equations from the conditions (1.7) : 

--&,a (Y)C, (Y) = u- (Y), 2GvR (y) ck (Y) = u- (Y) $ o+ (Y) (1.11) 
in which according to (1.5) 

c-(v)= 2Gm~a~(a,--)~1{A,[a,(a,-~)~1J,(uk)- 25J, (a,)] + 

+B ,p2+(~uh. t- s-u&J,(u,)} (1.12) 
R(Y)= Y~J~~(Y) + (Y" - rnJ J12(v) (1.13) 

Eliminating the function c, (Y) from (1. ll), we obtain a Wiener-Hopf equation 

K (Y) U_(Y) = o+ (Y) + c- (Y), K(Y) = 4Gm,R(v) J1”(v) (1.14) 

Let us represent the function K (Y) as 

K (Y) = K (0) K(Y) [IL+ (v)]-1 (1.15) 

K-(v) = ’ 
K+ (-Y) 

(1.16) 

Here &and &are a pair of complex conjugate zeros of the function R (Y) 
(He b, > 0, Im b, > 0). The foundation for the factorization of(1.16) is made in @I, 
wherein is also obtained the estimate 

K-(Y)= ]~--~[2+25]-~+0(1) for v--,00, Rev<0 (1.17) 

Taking account of (1.15). let us rewrite (1.14) as 

K (0) K-(Y) u- (Y) = s+ (Y) K’ (Y) + o-(v) K+ (Y) (1.18) 

and let us subtract the function 

Nk (Y) = K’ (ar) (S-(Y) _t 2 4kGm~ak2 (al, - VJ,, @k> T @k) 1 

T (ak) = 2 [jb, + ar)-’ + (6, + a$’ - 2 ($ t ak)-11 

p=1 

(1.19) 

from both sides of (1.16). 

The left and right sides of the equations obtained are regular in corresponding half- 
planes with the common strip 0 < He v < a. On the basis of (1.16). (1.19), conditions 
(1.3) and the estimate (1.17). it is easy to prove the identities 

K (0) K- (Y)u- (Y) - Nk (v) = u+ (v)K+ (v) + cr (v)K+ (17) - Nk (v) = 0 

hold by customary methods p] relying on the Liouville theorem. (1.20) 

Hence, and from (1.11) we obtain 

c,(v) 7 - 

N, (“) N, (“) 
‘XvR(v)K+(v) =- m&K (O)VJI~(Y) 

(1.21) 

The solution of the problem (1.6). (1.7) is given by the inversion formulas 
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ZP (2, r) = -& i Ck (v) [E’ (V) + P’ (V)] eyzdv 

wk2 (2, r) = - 2ki 5 ck (v) v [e (v) - p (v)] eYZdv 
L 

where the contour L lies within the strip 0 < Re v < CL. 
Combining (1.5) and (1.22). we obtain the solution of the original problem 

(1.22), 

dk) (2, r) = m,a,e akz (A@ + Bk) J, @kr) + & \ c,(V) [e’(V) + P’(V)] e”*dv 
E 

dkj (z, r) = - m,e “’ 1 A k (akz + 45 - 3, + Bkakl JO (Ukr) + (1.23) 

+A 
2iW F 

c, (V) V [E (V) - f3 (V)] eVzdv 
i, 

3ik) (Z, r) = i?&&lUk’?akZ [Ak (m4 - Ukz) + Bk&-’ (oak + 0 - I)] J, (a$) + 

+ & i c, (V) V’) [& (V) - 4m,p (v)] e%v 

T;:’ (2, r) = %hZIUkf?nkz [A, (Ukz - m%) + BkUk] ,,I (Ukr) + 

+g 
Ck (V) YE’ (V) eYzdv 

L 

c$“‘(z, r) = 2G mIakeah.* {Ak [2sJ, (a$) + [UkJ,, (a& - r-‘J1 (a&] Z] + 

+ Bk [m:-’ (ak - sal( - a) Jo (Ukr) - r-‘J, (a$)]) + 

+ $ i ck (V) (7’~‘E’ (V) + r -$I’ (V) + VT& (V)] eYZdv 
L 

Let us determine the character of the normal stress concentration around the line of 
separation of the boundary conditions. According to (1.20). we have 

S!lr)(Z, 1) = or1 (z, 1) + -& \ z [a’(v) + a-(v)] eVZdv = 

=off’(z,l)-Res 

where L, denotes the contour L transferred to the right of the point v = ak . Let us 
examine this last expression. Let us close the contour L, on the right, where the inte- 

grand is regular, by a semicircle of large radius. According to the Jordan lemma and 

the Cauchy theorem, the integral is zero for z < 0 , and therefore, by virtue of condi- 
tion (1.2). the first two members cancel. bet us make the substitution u = vz, without 

extending it on Lk. According to (1.16). (1.17) 

5!k) (z, 1) = & s 
N k (Y) e”ZdV 

Lk 
K+ (v)r 

Gm,Ek 

= 
ni r/2 (1 + 5) z 

s 

and (1.19), we obtain for z -+ + 0 

1 

s 
N, (u/i) e’du 

_- 
2xi -_. - = zK+ (u /z) 

-$- + O(1) 
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where 
E, = Q,J” (a@* (al,) (A, 120 - a,T (ar)] --- Llgn,-1 (at - -Ub - 5): 

Let us close the contour L, on the left by a semicircle of large radius, and the contour 

I,* comprised of a two-lipped slit along the negative real semi-axis and the circle 

lU/ = ‘/sar. Utilizing the Jordan lemma and the Cauchy theorem, Iet us replace Lk by 

the contour L, and by means of the formula 

1 1 - - =F zni r (Y) s evv-v d v 

L. 

(1.24) 

we finally obtain as z --+ -I- 0 

or@) (z, 1) - 2Gm,Ek [2n (1 + o) zl-“p (1.25) 

Let us determine the shape of the free surface of a deformed cylinder at the line 

z = 0, r = 1. According to condition (1.1) and the first part of the relationship (1.20). 
we have 

~‘~‘(2, 1) = & s u-(v) e”‘dv = &i “x;~‘~~~~ 
L 

bet us set u = - vz (z < 0) let us take the line Re u = - 1 as the contour of 
integration L,in the u plane. Substituting its asymptotics (1.17) in place of the func- 

tion K- (-u / 2) for small ‘z. and (1.19) in place of Nk (V) , we obtain 

Ek v/-2(1+‘3)z e-“dv c 8x(i+@ . -p- + O(z-l) 
L, 

As before, let us replace L, by a contour L, comprised of a two-lipped slit along the 
positive semi-axis and the circle ( u 1 = 1/2. Utilizing the formula 

(ezx” - 1) IY (y) = \ e-“zF1d~~ 

LZ 

(1.26) 

(the contours in integrals (1.24) and (1.26) are traversed counter-clockwise), we obtain 

as z-t-0 uCk) (2, 1) N - El, 1/- 2 [23X (1 + O)]-l (1.27) 

Now, let us construct a subsystem with a singularity at the point z = - co. Taking 

the solution in the form (1.4), (1.8), and satisfying condition (1.2). we obtain [4] 

uk3 (2, r) = Cbk3 (8’ (v) + p’ (v)}, wk3(z, r) = CD,““(V [E(Y) - pi} (1.28) 

ak3 {f (V)} = Ak Re [f (bk) ebkz] f Bk Im [f (bk) ebkzl 

where k = --1, -2, . . . . b-,, b-,, . . . . are zeros of the function R (v) in the 

Re v < 0 half-plane. Let us note that the equalities 

b _k = -bk, E (-Y) = -E(V), P (-y, = - P (“) (1.29) 

hold by definition and by virtue of (1.13). (1.10). 
Let us add the solution of the mixed problem 

‘t rl = 6, = 0 for r=i, z<O 

z rZ=O, U=-Uk3(Z, 1) for r=i, z>O 

to (1.23). 
By analogy with the solution (1.22), this solution is found by the Wiener-Hopf method 
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and has the form 

(2, r) = ok4 {e’ (v) _+ p’ (v)}, wk*(z, r) = @“{v [e(v) -p(v)]) 

4k*if 6% = Ak Be Hk [f @)I + Bk Im Hk If @)I (1.30) 

Hk If@)] = - &( 

(1 f a) bkJ12 (b,) X- (bk) f (Y) e”*dv 

L 
vR (v) K+ (v) (v - bk) 

We hence obtain (FE = -1, - 2, ,,.) 

z&l’) (2, 7-) = Qtk) {e’ (v) + p’ (v)}, tJk)(.z, r) = Qtk){v [e(v) - p(v)]) 

6 (k) (2, r) = Q(k) (2GW [e (Y) - 4m,p (Y)]), z T,,(‘) (2, r) = dk) (2Gve’ (Y)) 

o,(k) (z, r) = @‘“I (2G [ ile’ (Y) + r-lp (v) + v2e (v)]) (1.31) 

atk) (f (v)) = ok3 u WI -I- ok4 {f (@I 

Repeating the discussion applied in deriving formulas (1.27) and (1.25), we correspon- 

dingly find the stress concentration and shape of the free surface at the line of separation 

of the conditions 

CJ (kl(z, I)-2G[2(1 +a)]'l'(n;z)-'il~~3{K-(~)~~2(~)) for z~ +0 P (1.32) 

dk)(z, 1) N--4(1 - 0) 1/- 2K-J(1 + 6) 2 ok3 (If? (Y) J,2 (v)} for z --* - 0 

The principal vector of each homogeneous solution of the subsystems (1.23) and (1.31) 

is zero. Let us write the elementary solution of the problem of stretching a cylinder II] 

62 = A,, z,, = 6, = 6cp = 0, u = - 
Aoar 

2G (1 + a) ’ W=2c(1+4 /Ioz + Ra (1.33) 

Adding the s&u& of the mixed problem thereto 

rrz = 6, = 0 for r = 1, 2 < 0; Z,, = 0, U = 
Aom 

2G (1 + Q) 
for r= 1, z>O (1.34) 

we obtain the solution of the problem (1.1). (1.2) with nonzero principal vector without 

singularities at the points z = & 00 

U(O) (z, r) = - 

’ (‘I) (‘1 ‘) = 4xi (:_ 52) i 

[r-k’ (v) + F-'p' (v) + V2E (v)] evz dv 
r V2f12 (v) K-- (v) 

(1.35) 

‘O’ (‘I ~) = A, {’ - 4ni (I”_ ~2) S [’ (‘) - 4m,P (‘)I 

eyz dV 

62 Jl"(V)K-(v) 
L 

T,,(O) (z, r) = - 4ni 4” a2) 1 y@) eYf dv 
L VJX (v) Jr (v) 

A06 (1 + spa 6r(O) (2, 1) - -- 
A06 Jf=Fz 

(1 -u) Jczz 
for z--*+0, U(“)(z, I)- - 

G VW +a) 
for 2-b-O 

In order to construct the system of homogeneous solutions it would be most natural to 
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apply the Wiener-Hopf method directly to problem (1.1). (1.2) and to require that its 

solution have exponential singularities corresponding to the distribution of zeros of ak 
and bkatthepolntsz=*t, However, such a system would possess a substantial disad- 
vantage. In satisfying the conditions on the endfaces it would generate not normal but 

quasi- or completely regular systems of algebraic equations depending on the distance 
between the endfaces and the z = 0 plane. 

The system (1.23), (1.31). (1.35) reduces to normal Poincare-Koch systems for an 

arbitrary combination of the boundary conditions on the flat endface z = I, in the domain 

of contact z > 0. On the other endface, the conditions can be posed for 1 < 0 only in 

combinations of’ rrZ, w or uz, u. 

If the method of collocation is utilized, the system of homogeneous solutions can be 

used for any symmetric conditions on the endfaces, where the endfaces can be not only 

plane, but also in the shape of a surface of revolution. 

2. Let a section of the lateral surface of an infinite cylinder F = 1 be compressed 
by an absolutely rigid cylindrical collar. The collar radius is 1 - 6, its length 21, there 

is no friction on the contact surface, and the stresses in the cylinder tend to zero as 

Z--t&=. Taking account of the symmetry of the state of stress, let us write the con- 
ditions on tne boundary of the appropriate semi-infinite cylinder 

arz = u, = 0 for F=i,Z<O (2.1) 

Trz = 0, u=--6 for F=i, O<ZZZ (2.2) 
T ;pz=w=o for O<F<l, Z = 1 (2.3) 

Let us seek the solution of the problem (2.1)-(2.3) in the form of the sum 
co co 

U = U* (2, F) + 2, dk)(Z, F), W = W* (2, r) + 2 WC” (2, F) (2.4) 
k=O k=n 

Here U* (2, F), W* (Z, F) is the solution of the inhomogeneous problem (2.1). (2.2). 
This latter is a particular case of problem (1.34). Setting A o = - 26G (1 $- 0.) CJ-’ 
and taking account of (1.33). we obtain from (1.35) 

u* (2, r) = & c [E’ (v) + p’ (v)] e”* dv 

L 
rn4v’J~” (v) K- (v) ’ w* (2, r) = & ~ c [E (v) - p (v)] e”* dv 

t 
rn&~* (v) K- (v) 

a,* (2, 1) w -z (p-)“’ 
(2.5) 

for 2 ---f + 0 

u*(z, 1)--J -_+$_~W-22zn-1(1+o) for z-t-0 (2.6) 

Let us note that (2,6) written in @] has errors. Let us find the coefficients A k and 
Bk. Evidently A, = 0. Let us close the contour in (2.5) and (1.23) by semicircles pas- 
sing between negative zeros of the function Jr (Y). According to the Jordan lemma 
and the theorem of residues. we obtain 

W* (1, F) = 5 { -’ i=; ak + 3% 11 + T car) 1) SJf’ car) K+ car) car’ Jo (“kF) + 

+ 86om, [I + T (0)l 

T,,* (I, r) = 5 4G6m,akJo-1 (ak) K+ (ak) [I + T (ak)] e-=k’& (ag) (2.7) 
k=l 
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tu’k’(z, r) =-??Zm,[Ak(Ukl+4a- 3, f Bkakl eaX’Jo @kr) f 

+ 5 dkn @kn + Pkn) PnkAk - @knl eBa”r& (anr) 

n=o 

r PI “‘(l, r) = 2Gmlak [(akl -m,) Ak + Bkakl eakzJl (ad 6 
co 

f 2 2Gdknan iAkPnk @kn + Pkn - m4) + gk (m4 - skn)) e -%’ J1 (a,r ) 
?I==1 

where 

Skn = Pkn $ an [I -t- T (an)1 + mz9 Pkn = an (ak $_ an)-‘, 6 = 0 

dkn = PnkK+ (an) K+ (ak) Jo (ak) I8 (1 - 0’) JO (%)l-’ (2.8) 

g, = At, [26 - a$ (ak)] f fikmz-l (ak - a$ - 0) 

Let us substitute (2.4). and then (2.7) into condition (2.3) and let us interchange the 

order of summation. Equating coefficients in the functions J,(a&, J, (ag) and intro- 

ducing the unknowns Xkl = Akeakf, Xkz = Bkeokz (k = 0, 1, . ..). we obtain the 
infinite system of algebraic equations 

x‘kt $ g 4e-*@kt”n)d,k {i&k + pnk - 1 $_ 6, Pkn -t (I - Q - %k) (T (an) + 

?3=1 

$ 2a) a,] x,1 + (1 - 0 - &k) 1% - a& - 01 m2-1&+ 

= - 28e-ak’Jo-1(ak)Kf (ak) {IT (ak) + 114m, + ak+> (2.9) 

Xks +, i 4em1(a’+an) d nk ([[(a&- 3a- 2)(%k+p?h4- G) (akh 4a -3)lPknf 

?I=1 

+ [(I - o)(akl + 40 - 3) - (akl + 30 - 2) %kl IT (a,) + 201 anI xn1+ 

+ [(I - a) (akl $ 46 - 3) - (akl + 30 - 2, s,k] [(I - 0) a, - al m2’1Xn%} = 

= - 26e+K+ (ar) JO_’ (ak) {(akl - %) akml $ 4ml [T (ak) + zI (akz + 3~5 - 2)) 

where k = 1, 2, . . . and the formula for B,is 

B, = --8a[z + T(O)]--8(1 -a")+ i m2Jo(U~)~+(Uk)(&-gk) (2.10) 
k=l 

The asymptotic expression @] 

ak = kn + 0 (k-l), bk = kn + i0 (In k) + o (k-1 In k) (2.11) 
and (1.17).(1.19).(2.3) yield such estimates for large k and n 

Pkn < % K+ (ak) = o (k-% T (ad = 0 (I), snk = o (k), dnk = o (k-q 
Utilizing them we obtain the absolutely convergent series (2.12) 

co co 

2 2 M,knexp[---Z(k+n)l 
k=l n=l 

(2.13) 

(M, are constants) which majorizes the double series of the matrix of the system (2.9). 



598 B. M. Nuller 

From the same estimates it follows that the moduli of the free members of the system 
(2.9) are bounded. The system (2.9) is therefore normal [5]. 

Let us show that its infinite determinant is nonzero. Let us assume D = 0. According 

to the Kronecker-Capelli Theorem 76.7~ in [5] there exists a nontrivial solution of the 

homogeneous system (2.9) generated by the condition, 6 = 0, and this contradicts the 

uniqueness theorem for the solution, bounded at infinity, of the problem of elasticity 
theory. 

Since D # 0, then according toTheorem 76.5 in [5&a normal solution of the system 

(2.9) exists, is unique, and can be obtained by Cramer’s rule. 

Let us estimate the rapidity of diminution of the coefficients’ A n, B, and the conver- 
gence of the series (2.4). Let us write the system (2.9) as 

00 2 

2 2 akn spx,s = hkp, p=l, 2; k=1,2,..; (2.14) 

The elements ai: and hkr are easily determined from (2.9), where if k # n and 
S =/= p simultaneously 

1 aknsP I< Mzkne-n’(“+k), 1 hkp [ < Mske-X’k (2.15) 

According to Cramer’s rule X,, = D,, D-l, where D,, is the determinant obtained 
upon replacing elements of the ns-.th column a”k”n by the free terms hkP. Since series 

in the elements hbp converge absolutely, then D,, is a normal determinant, and by vir- 
tue of Theorem 74.9a of [S], an expansion in elements of any row exists for it. Let A’n”p 
be the cofactor of an element ars nq if the ns- th row in the determinant D,,,, P the Koch 
majorant for D, and M, = max lhkpl in k and p. The determinant A nrs is not nor- 

mal, but by relying on Theorems 73.8~, 73.9a and 71.6~ in [5],it can be shown that 

it is bounded: ]A$1 <6M,P. Let us expand D,, in elements of the ns- th row. Taking 
into account that azn z &a and utilizing the inequalities (2.15). we obtain 

1 D,, 1 = / 2 i anQrsAnqrs I< 6M4P 15 i anqPS I< MgnePzn 
(I=1 i-=1 Q=1 r=r 

Thus Ix,, 1 < Me ne- dn , therefore the series (2.4) converge no more slowly than 
a series with general term k2e-Xk(2~-Z). 

The problem (2.1) - (2.3) can also be solved for arbitrarily prescribed functions z,., 
and w on the endface. The appropriate example is examined in the next section. 

9. Let us consider a problem for a semi-infinite cylinder r = 1, --00 < z < I, which 
is loaded on the endface and compressed on a section of the lateral surface 0 <z < 1 
by a cylindrical collar of radius 1 - 8. Let us write the boundary conditions 

z i-2 =a,=O for r=l, z<O (3.1) 
zr,=o, u=-6 for r=l, O<z<Z (3.2) 

z pZ = fl (r), bZ = fz (r) for O<r<l, z=l (3.3) 

Let us seek the solution in the form (2.4) - (2.6). Let fr (r), fz (r) E L, (O,i).‘Then 
the following expansions are valid : 

fl (r) = fg 

1 

'kJ1 @kr.)' ck = 2Jom2 (ak) 
s 

fl (r) JI (a,?) rdr (3.4) 
k-1 0 
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fo (6 = i +Jo (akrh 
1 

d, = uo-’ (“d s fe (r) Jo (+f) rdr 
k=O a 

where the coefficients ck and dk are bounded. Let us find the coefficients A& and B,. 
From the equi~b~um condition A, = de and B, remains arbitrary. As in the preceding 
section, let us compute the inhomogeneous and homogeneous normal stresses at z = 2 

03 

Oz+ (I, F) = - 2, 4Gmd ~ {i+ Qk [Z + T (Uk)]} c-+ Jo (a& (3.5) 

b=l 

cizlM (1, r) = 2Gm1ak [AR (m4 - ~~2) + Bp- (mk + 3 - 1) eaft J0 (a& + 

+ 2G 5, e-a,E a,,dkn {gk (skn - mz) - A&.,, [skn + Pk,, - 41 Jo (a& (k = 1.2, . . .) 

n=l 

Let us substitute stresses in the form (2.4) in the left side of the conditions (3.3). utilize 
the expansions (2.7) for z,_* and r$t) and the expansions (3.5) for the remaining func- 
tions. Let us substitute the series (3.4) into the right side of (3.3). Interchanging the 
order of summation and equating coefficients for the functions J, (ukr) and J, (a& we 
obtain an infinite system of algebraic equatiofis 

(a+ -- ma) Xkl + akXLB + 5 ~~W1e-lfnk’an)d,,r; [(snr + pnk - m4) P~,,X,,~ -I- 

?l=l 

(m4 - a&) X,, + m2-l (aal, + 6 - 1) X,, -/- 5 2m4e-’ (ak+anf d,, lg+,* (s,k-mz) - 

11=X 

x Ii + ak v (QjJ + 01 
K+ tQ& 

Jo(a )e”“l -do+d, 

k I 
where 

gn* = x*l [ 23 - anT (a,)] f x,,me-’ @.& - son - 4 

In the canonical form (2.9) this system evidently has the matrix (2.15) and bounded 
free terms. Hence, it and its solution are normal, and therefore, the coefficients A b and 
Bk diminish as e-*&r_ The reasoning of the preceding section can be duplicated for 
ft (F) = fs (r) = 0, and a stronger estimate can be obtained. 

4. Let us consider the contact problem for a semi-infinite cylinder with free latera 
surface at the endface under the following boundary conditions: 

z rt= r d -0 for _r=i, I<z<O (4.f) 
r5pz=o’ u=---6 for r=i, o<z<c0 (4.21 



600 B. M. Nuller 

r,* = fl (r), w=h(d for O<r<l. 2-l 

Let us write the solution as 

u = u* (2. r) + -i .tk) (2, r), W = ui* (2, r) + -i tu(Q (2, r) 
L-1 k=-1 

Utilizing the relationship of generalized Schiff orthogonality [4] 

(4.3) 

(4.4) 

z [e’ tbk) P’ (b,) f e’ (b,) p’ ($)I rdr = 0 for k # n 
; 

1 

[d(bk) p'(&J+e'(8,) p’(b&] rdr= 0 for all k and n 
0 

we expand the functions fr (r) and fi (r) in series of homogeneous solutions of the first 

fundamental problem of elasticity theory for an inRnite cylinder 

fl (r) = 2G 2 [eke’ (bk) + eke’ &)I 
k=l 

f-2 (r) = j?j {ck [e (bk) - p (bk)l +ck ie t&k) - p (‘k)l) (4.5) 
k=l 

1 

CL= i ([ fl (r) - 2Gfr’ (r)] e’ (bk) + 11 (r) p’ (by)} rdr [4G \ P’ (Q a’ (bk) rdr]-r 
0 0 

Let us close the contour L in (2.5). (1.30) and (1.31) on the right by semicircles pas- 

sing between the zeros of the function R (Y). According to the Jordan lemma and the 

theorem on residues, we obtain 
00 

TrZ* (1, r) = 2 2G It (bk) a’ (bk) + r (&) a’ &)I 
X=1 

rrz(k) (I, r) = (AR - ii?,) G 
{ 

bkexp (b,Z) e’ (bk) + i [T (bk, b,,) exp (b,l) e’ (b,) + 
n=1 

+ T (bk,b,) oxp (i;,l) e’ @,)I} + (Ak + iB,) G :bk oxp (Q) e’ (b,) + 

+ i [T Cbk, b,,) axP (b,l) s’ (b,) + T (&V &,) axP (&,I) e’ (&)1) 
n=1 

(4.6) 

r (bk) = 
6 (1 + 0) oxP (bj$ 

(1 -a) b,R+ (bk) K+ (bk) ’ (bk9 bn) = 

2 (1 + a) K- (bk) 51’ (bk ) 
R+ (b,) K+ (b,) (bn - bk) 

R+ (bd = 2 {bkJoz (bk) - ~$1 (b,J [Jo (bJ - b,-lJl (b&l) 

Let us substitute the series (4.4) and (4.5), and then (4.6) into the first equation of 
(4.3). Taking account of (1.29). we interchange the order of summation and equate the 
coefficients of the functions e’(bk) and es(&). Introducing the unknowns Ykl - iYk$ = 

= (A-k - iB_,) exP (- bkZ) we obtain a normal system of algebraic equations 

Ykl - 5 {Y?,r Re Iv,, (bk) + ‘p, (&,)I + yn, ~mi'P,(bk)+'Pn 6k)1j=Re *)I, 

n=1 
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The second condition in (4.3) is satisfied automatically. In the general case A,, Bk Y 
N 0 (ewnkz) if f1 (r) = js (r) = 0, which corresponds to compression of an infinite cylin- 

der by two semi-infinite collars A,, B, - 0 (k~-2%~"). 
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BUCKING OF PLATES MALIE: OF A ~O-HOO~~ AXIAL 

IN THE CASE OF AFFINE INITIAL DEFORMATION 
PMM Vol. 34, lP4, 1970, pp. 632-642 

L. M. ZUBOV 
(Leningrad) 
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We construct two-dimensional equations describing the bending bifurcation of equilibri- 
um of plates made of a neo-Hookean material, for the case of homogeneous initial defor- 

mation. We derive bee-dimensional equations of neutral equi~brium for this material. 
A variational principle which is equivalent to the differential equations of neutral equi- 

librium and analogous to the the Refssner’s principle in the classical theory of elasticity, 
is established. We use this variational principle to derive two-dimensional equations of 
buckling of plates by approxima~g the variations fn the values of the knot functions 

in the normal direction. The cases of buckling of a uniformly compressed circular plate 
and of a rectangular plate under a combined load are used as examples. An exact solu- 

tion of three-dimensional equations of neutral equilibrium is obtained for a circular 

cylinder compressed over its lateral surface, with axial symmetry present. and compared 
with the corresponding tw~dimensional result. 

1. Equation8 of nsutrrl equlllbrlum for or neo-Hookarn mate- 
r ir 1. Specific potential energy of deformation is given for a neo-Hookean material 

by the following expression : 
w = Cl (I, - 31, Cl = const 


